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Unsteady three-dimensional incompressible viscous flow fields induced by initial 
vorticity distributions are studied. Relevant invariants and decay laws of the 
moments of vorticity distributions are presented and shown to be useful in the 
numerical calculation of flow fields in two ways. First, the moments determine the 
leading terms of the far-field velocity, which can be employed as boundary conditions 
for the numerical calculation. Secondly, the deviations of the numerical results from 
the invariants and the decay laws can be used to measure the error of the numerical 
solution. 

1. Introduction 
We consider an incompressible viscous flow field induced by an initial vorticity 

distribution c(X) in three dimensions, where X denotes the position vector with 
Cartesian coordinates xi, i = 1 ,  2 and 3. The velocity V(X, t ) ,  the vorticity n(X, t )  
and the pressure p are governed by the differential equations 

n=vxv,  ( 1 )  

v .v=o,  (2) 

where p and v are the constant density and kinematic viscosity respectively. The 
initial condition a t  t = 0 is given by 

n(x, 0) = W). (4) 

We shall use ui and oi to denote the components of V and C2 respectively. The initial 
data 6 is of bounded support or decays exponentially in r ,  which denotes 1x1. 
Consequently, the vorticity decays exponentially in r for t 2 0, 

In(X, t)l = O(e-br) (5) 

(6) 

for some positive constant b,  and the induced velocity field will be at rest a t  infinity, 
i.e. IVI+O as r + m .  

We note that (1)-(4) and (6) define an initial-value problem in an unbounded 
domain. However, numerical solutions of this problem can only be constructed for 
a bounded domain D ,  for which we have to impose appropriate boundary conditions 
and assess the error E,, introduced by these conditions. The error eb will be related 
to the size R of the domain D. The error for the numerical solution is now composed 
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of two parts cb and cd. The latter, ed, denotes the error of the finite-difference 
approximation, and is related to the grid size and the time step. For a given degree 
of accuracy, we shall then be able to specify the required grid size, time step and the 
size R of the domain D. 

Although the condition (6) on V a t  infinity suggests that  we impose the approximate 
condition v = o  (7) 

on the boundary dD for the numerical solution, we cannot assess the error &b of the 
approximation in terms of the size R of the domain D. We therefore have to  derive 
a far-field behaviour for V, i.e. how IVI + 0 as r + oc) . This is accomplished by making 
use of the far-field behaviour of vorticity, ( 5 ) .  

We introduce 
derived from (3) : 

as a prime variable governed by the vorticity evolution equation 

Q + ( V . V ) a - ( a . V ) V  = v A ~ .  ( 8 )  

The velocity V is related to its vector potential A by the definition 

V = V x A ,  (9a) 

V . A = O .  (9b) 

AA = -a. (10) 

The vector potential A is then related to by the vector Poisson equation 

Equations (1)-(3) are now replaced by (8)-(10). The solution of (10) for a given 
vorticity distribution with boundary condition (6) is 

where dX‘ denotes dxi dx; dxj. From (9a) we relate V to a, and (8) then becomes 
an integro-differential equation for a. 

For the numerical solution of the problem in a finite domain D, we only have to 
impose the approximate boundary condition on a, i.e. 

a=O onaD.  (12) 

The error of this approximation is 

c,, = O(ePbR), 

which follows from the condition ( 5 )  on Q. The error of the numerical solution of the 
integro-differential equation is now composed of three parts €0, cd and cD.  The last 
one, c,,, denotes the error of the approximation to the integral (11) by the integration 
over the finite domain D only. c,, can be estimated by ( 5 ) ,  and is found to be of the 
same order as eb, i.e. of exponential order in R. Numerical solutions of the 
integro-differential equation for vorticity were carried out for two-dimensional 
problems by Wu & Thompson (1973) and by Lo & Ting (1976). 

Unfortunately, this scheme proves to be very inefficient in that the number of 
computational steps in evaluating the integral (11) for all N grid points in D is of 
order N 2 .  This is an order of magnitude larger than the number of computational 
steps for solving the original system of differential equations (8)-( lo), which is of order 
N In N .  

We arrive a t  the number N In N by considering the numerical solution of (8)-( 10) 
to consist of two parts: (i) the determination of the velocity field from a vorticity 
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distribution by inverting the Poisson equation (lo),  and (ii) the evolution of vorticity 
from (8). which is the only equation involving a t-derivative For each time increment 
the number of computational steps is dominated by the number needed to invert the 
Poisson equation, which is of the order N In N .  

On the other hand, numerical solutions of the system of equations (8)-(10) require 
not only the far field behaviour of Cl but also that of V. We shall demonstrate that  
the far-field behaviour of V can be derived from the far-field expansion of the Poisson 
integral. However, before doing this we make two remarks. First, we note that the 
Poisson integral could be used to define the boundary value of V on SD. This method 
is also inefficient in that the number of computational steps for generating the 
boundary data of V is of order M ,  which is still much larger than Nln N. Secondly, 
we observe from the Poisson integral that  

IAl = O(r- l ) ,  (13a)  

and hence IVI = O(r-2) .  (13b) 

If we impose V = 0 on SD, the error is of order RP2.  If we can prescribe more-accurate 
boundary data for V, instead of IVI = 0, we can maintain the same degree of accuracy 
while reducing R, i.e. the size of D ,  and hence reduce the total computational time 
by an order of magnitude. For example, if we require the error to be less than E ,  R 
has to be of order c-4 on account of (136). If the error of the boundary data of V is 
reduced to 0(E5), we need only R to order E-; .  Thereby we reduce the size of the 
domain by a factor of E-& and the total computational time by a factor of E*. We 
reach the latter conclusion by maintaining the same step sizes, that  is, the same degree 
of accuracy for the finite-difference scheme. 

To generate more-accurate boundary data for V or A, we make use of the far-field 
behaviour of the Poisson integral (1  l ) ,  which is the expansion of 

where 

Here f and f' denote unit vectors in the directions of X and X' respectively. P, is 
a Legendre polynomial, and (Y')~Z', is a homogeneous polynomial in xi of degree n. 
Consequently PA(,) is a homogeneous polynomial in xi of degree n, and its 
coefficients are the nth moments of vorticity. The first three terms of (14) are 

3 3  

A(') = )= I: ( x j w i )  hj.ii, 

A(') = Z: Z: ( x ~ x , W i ) ~ 3 h i h k - - ~ k l Q i ,  (17) 

(16) 
i = l  j=1 

3 3  

i=l j ,k=1  

where hi are the components o f f ,  ti are the unit vectors parallel to  the coordinate 
axes, and ( ) denotes the volume integral over the entire space. 

We note that the coefficient of the nth term in the far-field expansion (14) is of 
the form 3 N  

i-1 1-1 
Acn)(8, t )  = I: I: Mfa)(t) GI?) ( f )  fi, 
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where 3N is the number of nth moments of components of Jz and is equal to 
$(n+2)(n+ 1). Therefore we can say that the nth term in (14) has that many 
components GiF), and the nth moment MlF) defines the strength of that  component. 
It is therefore of importance to  relate the moments, or linear combinations of them, 
directly to their initial values before solving the initial-value problem. Such 
relationships will be useful in getting the far-field velocity. They can also be used to 
verify the accuracy of the computational code for the problem and to  measure the 
error due to the finiteness of the domain. 

Poinear6 (1893) obtained integral invariants and a decay law for the moments of 
a two-dimensional vorticity distribution. For the three-dimensional problem, invari- 
ants of linear combinations of components of the nth moments (referred to  as ‘the 
nth symmetrical moments of vorticity’) were derived by Truesdell (1951) from the 
divergence-free condition on vorticity and its far-field behaviour. Additional results 
were obtained by Moreau (1948, 1949) regarding the first and the second moments 
from the vorticity-diffusion equation. Unified proofs of these results from a formula 
of the type called ‘vorticity divergence formula’ and a systematized search of all 
possible formulas of the same type were presented by Howard (1957). 

In  $2, we will list the results of Truesdell, Moreau and Howard which will be needed 
in $ 3  to define the far-field behaviour of the velocity field. The equations defining 
the boundary data of the numerical solutions are presented for three-dimensional 
problems and then for the special cases of axisymmetrical and two-dimensional 
problems. 

For the sake of completeness, outlines for the derivations of these formulas listed 
in $ 2  are presented in the appendix. Systematic and thorough presentations and 
derivations of them can be found in Howard (1957) and Truesdell (1954). 

2. Integral invariants and decay laws 

the far-field behaviour of the velocity. 
I n  this section we list those relationships which are pertinent to  the derivation of 

From the definition (1) of Jz. we see that it is divergence-free: 

v.n=o. (18) 

Using the above and the far-field behaviour of Jz, it was shown that the nth coaxial 
moment along an axis parallel to a vector B should vanish (see the appendix and 
Truesdell 1951) : 

m 

I (n)  (bl, b,. b,, t )  = [[[ [B . XInB . n(X, t )  dX = 0 (19) 
J J J - 0 0  

for t 0, n = 0, 1,  2 , .  . ., and for all bi, which are the components of B. Since I(n)  (bi) 
is a homogeneous polynomial in bi of degree n + 1, (19) holds only if all the coefficients 
in the polynomial are equal to  zero. There are i (n+3)  ( n + 2 )  coefficients, which are 
linear combinations of nth moments of vorticity. Hence we have $(n+ 3) (n+2)  
consistency conditions for the $(n+2) (n+ 1) components of the nth moments. The 
results of this are stated for n = 0, 1 and 2 in the following. 

For n = 0 we have three conditions: 

( w i )  = 0 (i = 1,2,3). (20) 

Equation (20) states that  the total vorticity has to  be zero for all time, i.e. 

(0) = 0.. 
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As a result, (15) becomes A(O) = 0, and (14) says that 

Consequently we obtain the far-field behaviour of V: 
IVI = IV x AI = 0 ( ~ - 3 ) .  

For n = 1 we have six conditions: 

( x i u j ) + ( x j w i )  = 0 ( i , j  = 1,2 ,3;  j 2 i). (23) 

Equation (23) says that the 3 x 3  matrix of the first moments (Xfk*) is skew- 
symmetric. Here we represent a vector by a column matrix and its transpose by (*). 

For n = 2 we have ten conditions for the eighteen second moments: 

( x f w i )  = 0 (i = 1,2,3) ,  (24a) 

(.fWj) +2(XiXjWWi) = 0 (i,j  = 1,2 ,3;  i *j), (24b) 

~ x ~ x 2 w 3 ~ ~ ~ x 1 W 2 x 3 ~ ~ ~ W 1 x 2 x 3 ~  = O’ (24c) 

I n  addition to those consistency conditions, only a finite number of integral 
invariants were obtained by Moreau (1948, 1949) for the vorticity evolution equation 
(8). They consist of three equations for n = 1, three for n = 2, and none for n 2 3, 
and are accounted for in the following way. 

For n = 1 ,  we can show from (8) that  the matrix (Xfk*) is time invariant. Since 
the matrix is skew-symmetric, (23), we have only three non-trivial time invariants. 
We choose the following three : 

( x . w . )  = ( x i & )  = c k  (k = 1 ,2 ,3 ;  i * j $. k ;  i <j). (25) 

For t 3 0 the second moments are defined by the three constants c k :  

(xn*)= [ -c O : q. (26) 
-c, -c, 0 

For n = 2, we have, in addition to  the ten consistency conditions (24), three 
non-trivial invariants. They are 

( r 2 0 i )  = (r2Ci) = Di (i = 1,2?3) ,  (27) 

and are equivalent to  ( P a )  = D. The latter says that the polar moment of vorticity 
with respect to the origin is time-invariant. 

Altogether we now have thirteen conditions (24) and (27) for the eighteen second 
moments. The remaining five linearly independent integrals can be chosen as follows : 

Gk(i!) = ((Xf-x,”)Wk) ( k  = 1,2,  3) ,  (28) 

Hk(t)  = (2x,x~~k-x~xkW~-xkxjwi) (k = 1,2),  (29) 

where i 4 k =+ j and i < j. We note that H ,  + H ,  + H3 = 0. The above five integrals 
are of course time-dependent and can be defined approximately at each instant of 
time by numerical integrations over the finite domain D. 

For n 3 3 we have only +(n+3) (n+2) consistency conditions from (19), for the 
$(n+2) (n+ 1 )  components of the nth moments. To define all the nth moments we 
have to compute n(n+2) of them by numerical integrations over D. 
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The relationships listed in this section will be employed in Q 3 to define the boundary 
data for the vector velocity potential. Furthermore we note that these relationships 
are valid for integrals over the entire space, while the corresponding integrals of the 
numerical solutions are evaluated over the finite domain D only. The deviations of 
the numerical results from those integral relationships can therefore be used to serve 
the purpose of measuring the overall effects of the size of the domain D on the 
accuracy of the numerical solutions. 

For the same purpose, we shall include one additional integral relationship which 
expresses the rate of decay of the total energy T. From the integral of the energy 
equation we obtain 

where T=S(V.V)=S(A.O) ,  
(30) T(t) = -<a>, 

I n  deriving (30) we integrate by parts and make use of the far-field behaviour of V, 
A and O repeatedly. I n  particular, we note from (16), (21), (22)  and (26)  that V, is 
O(rP4) ,  while V is O ( F ~ ) .  Consequently, we find that p is O ( F ~ ) .  This condition is 
needed to show that the work (V . V p )  done due to pressure vanishes. Equation (30) 
then becomes a decay law for ( A .  a) : 

( A .  a) = ( A .  c) t=o+ I! (31) 

3. Far-field conditions 

can be represented as a power series in r - l :  
When the vorticity decays expontially in the far field the vector velocity potential 

The leading term of the series in (14), which is of order r-l, is dropped because of 
the consistency condition (20) .  The term that is of order r-2 represents the contri- 
butions of 'dipoles ' a t  the origin. Their strengths are defined by the nine components 
of (Xn*), the matrix of the first moments. The matrix is time-invariant and is 
defined in (26) by three constants c k ,  which are specified by the initial data in (25) .  
Consequently (16) and (26)  yield 

where i + k + j  with i < j .  Recall that t k ,  k = 1 ,  2 ,  3, are the unit vectors along the 
coordinates axes and hk are the direction cosines of X and hence the components of 
P. We note that A(1), the coefficient of r+ in ( 3 2 ) ,  is independent of t .  

The second term in (32) represents the contribution of ' quadrupoles' a t  the origin. 
Their strengths are defined in (17)  by the eighteen components of the second moments 
(xi xj w k ) .  By using the ten consistency conditions (24a-c) and the integral invariants 
(27), the coefficient A@) can be written as 

(i  *j * k; i Cj). (34) 
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The three constants D, are defined by the initial data in (27). The last two terms 
in (34) involve the time-dependent second moments G,(t) and H,(t). At each instant 
we have to evaluate only those five integrals defined in (28) and (29) for Gk(t )  and 
Hk( t )  and will then be able to define A to order r-3. 

If we construct the numerical solution of the Navier-Stokes equation for the 
evolution of vorticity, and then the Poisson equation for the vector velocity potential, 
we can use (12) and (33) as the boundary conditions for R and A respectively. The 
error due to the boundary data is dominated by that for A, and hence is O(RP4). By 
equating this error to that of the finite-difference equations we can relate the step 
sizes to the size of the domain. 

In  principle we can obtain a better estimate of A in the far field by the addition 
of the terms involving third and higher moments. However, improvement may not 
materialize because small numerical errors in the vorticity distribution in the far field 
will be amplified in those n(n + 2) components of higher moments which can only be 
evaluated approximately by numerical integration over the domain D.  

In  $3.1 and 3.2 we shall reduce the results of the general three-dimensional case 
to the axisymmetric one and to the two-dimensional case with appropriate 
modifications. 

3.1. Axisymmetric flow 

For the special case of an axisymmetric flow in which the vortex lines are coaxial 
circles, the vorticity vector can be expressed in terms of its circumferential components 
0, 

(35) 

where a, 0, x3 denote the cylindrical coordinates. It is clear that  is divergence-free; 
therefore all the consistency conditions are fulfilled automatically. For the integral 
invariants of the first moments (26) the non-trivial ones are (xl w , )  and ( x ,  wl). We 
thus have 

(x1w2) = - (x2 W l )  = j-: som na20(a, x,, t )  d n d x ,  = constant = C,. (36) 

n = O(a,x , , t )O = [ -s in0t1+cos0t , l~,  

We note that a circular vortex filament, with cross-sectional area dadx ,  and 
strength Odadx , ,  is equivalent to a uniform distribution of doublets with the same 
strength over the circular disk spanned by the filament. Consequently (36) expresses 
the conservation of the total doublet strength. The use of this conservation law to 
check the accuracy of the numerical solutions was suggested by Ting (1981). 

For the second moments, only two of the eighteen components are non-trivial. 
Those two, ( x 3 x 1  0,) and ( x 2 x 3 w 1 ) ,  are related to one integral, which represents the 
first moment of the equivalent double distribution with respect to x,, and are given 
hv 
“J 

(x3x1w,)  = +H,(t) = - ( x2x3w1)  = -+H,(t) = J-: sooo X,[na20] dadx,. (37) 

For the thirty components of third moments, only six are non-trivial. They are 
related to  two integrals as follows : 

( x ; x l w z )  = - ( x ;x2w1)  = g(x;w,) = -g(x;wl) 

= I l ( t )  = A s m  s,” a 2 [ n a 2 0 ] d a d x 3 ,  
4 --m 

r-m roo 
z2[na20] dadx,. (38b) J-, Jo ( x ; x 1 w 2 )  = - ( x ; x z w l )  = I z ( t )  = - 



504 L. Ting 

Using these results, we finally obtain the far-field vector potential for an axisymmetric 
flow field: 

with 

Here @ can be identified as the stream function for the axisymmetric flow. 
When the boundary data for @ are defined by the three leading terms of (39) instead 

of @ = 0, the error is reduced from order RP2 to  R+. Consequently the more-accurate 
boundary data allow us to reduce the size of the domain and the computational time 
by an order of magnitude. This fact is demonstrated by Liu & Ting (1982) in their 
study of the self-merging of a vortex ring when its vortical core radius is comparable 
to the radius of the ring. 

3.2. Two-dimensional $ow 

For a two-dimensional flow in the (x,, x,)-plane, we use (a, 8) to  denote the polar 
coordinates and define the far field by a >> 1 .  The vorticity vector and the vector 
velocity components have only one non-trivial component : 

$2 = w3(xi7 ~ 2 ,  t )  Q33 A = @(x1, x23 t )  23, (40) 

where @ is the stream function. When the vorticity decays exponentially in a we can 
derive the far-field behaviour of V from the Poisson integral for the stream function. 
They are 

where p is a positive constant. 
Since the two-dimensional vorticity distribution w, Q, is always divergence-free, 

there will be no consistency conditions. The integral invariants for the total vorticity 
and the first moments as well as a decay law for the second polar moment were 
obtained by Poincar6 (1893). They are 

( w , )  = r, (x2w,)  = C,, (xlw3) = C,, ( a ' w , )  = 4vTt+D,, (42) 

where r, C,, C, and D, are constants defined by the initial data. They are r = (Q), 

For the second moments there are three components. We know only the polar 
Cl = (x2 [,)I c2 = (21 Q) and 4 = (a2 6). 

moment, and choose the other two components to be 

They have to be evaluated by numerical integration of the instantaneous vorticity 
distribution over the finite domain D. 

Using (42) and (43) we obtain the far-field behaviour of the stream function: 

r 1 
2n 2na 

@(a,O,t) = -lna----[C, sinB+C, C O S ~ ]  

[G3(t)  cos 28 + H,( t )  sin 281 + O( c3). (44) 
1 

2na2 
-__ 

When r + 0 we can use (42) to  show that the 'centre of gravity' of the vorticity 
distribution is stationary. We can then choose the centre of gravity as the origin and 
obtain C, = 0, c, = 0. Then, from the far-field behaviour of @ in (44), we see a vortex 
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and two quadrupoles located a t  the origin. Equation (44) is employed to define the 
boundary data by Weston & Liu (1982) in the study of the roll-up of vortex wakes. 
They show that their numerical scheme is much more efficient than the scheme of 
Steger & Kutler (1977), who used @ = 0 as the boundary condition. 

The author wishes to acknowledge Prof. David Stickler for valuable discussions 
and Prof. Steve Childress for pointing out the papers of Howard and Truesdell. This 
research is supported by an ONR contract. 

Appendix. Derivations of formulas in $2 
Formulas of the type (19) can be derived from the divergence-free condition of SZ 

and its far-field behaviour in two steps. We will show than an nth ‘coaxial’ moment 
of R should vanish. Those formulas of the type (19) will then follow from the fact 
that the direction of the axis can be arbitrarily assigned. 

For the first step we note that the nth coaxial moment about the x3 axis is 

JjI-: x: w3 d x  = J-1 dx3 5: 1 JJ-: w3 dxldx, 1 
From the divergence theorem the integral over the plane of constant x,, which can 

be written as JJ-1 R . i, dx, dx,, is equal to a surface integral of SZ . A over a hemisphere 

with radius R + co. Using the far-field behaviour of SZ we obtain the result for the 
coaxial moment about the x,-axis : 

00 

[[[ (X . i3)n 51. i, dX = 0, 
J J J - a ,  

This statement is valid for an axis along any direction B with components b,. 
Equation (A 1) becomes 

which is (19). 
To derive the temporal relationship for the moments of vorticity, we apply the curl 

operator to (3) in its conservation form and obtain the equation for the temporal 

J / J - l (X.B)nR.BdX = 0, (A 2) 

variation of vorticity : fit = - v ,v. (Vv)] + 

Each term on the right-hand side of the equation contains two differentiations with 
respect to the space variables. We then carry out the following four steps. 

(i) We multiply both sides of (A 3) by x:l xg2 x k  and integrate both sides over the 
entire space. The left side becomes the rate of change on an nth moment, where n 
is the sum of the integers n,, n2 and n,. 

(ii) For each term on the right-hand side of the equation, we integrate by parts 
twice, to  remove the spatial derivatives, yielding boundary terms and an (n - 2)th 
moment of the vorticity or of a product of velocity components. 

(iii) The far-field behaviour of vorticity and velocity shows that the boundary terms 
vanish, and that the integrals of the (n-2)th moments of the products of velocity 
components exist. This step can be carried out for n < 4 under condition (22). 

(iv) For n 2 2 we need one more step because the right-hand side will contain the 
integrals of the moments of the products of velocity components, which are unknown 
prior to the solution of the initial-value problem. We seek linear combinations of nth 
moments to eliminate terms involving products of velocity components. 

Carrying out these four steps, we arrive at (25) and (27). 
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